Local interactions of ⁵⁷Fe after electron capture of ⁵⁷Co implanted in α -Al₂O₃ and in α -Fe₂O₃

I Dézsi†||, I Szűcs†, Cs Fetzer†, H Pattyn‡, G Langouche‡, H D Pfannes§ and R Magalhães-Paniago§

[†] MTA-KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, PO Box 49, Hungary

‡ IKS, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

§ Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Received 20 August 1999, in final form 19 January 2000

Abstract. α -Al₂O₃ and α -Fe₂O₃ were implanted with ⁵⁷Co at room temperature. α -Al₂O₃ showed complex Mössbauer spectra indicating paramagnetic hyperfine splitting for high-spin Fe³⁺ and electric quadrupole-split spectra for Fe²⁺ ions. In canted antiferromagnet α -Fe₂O₃, the implanted Co atoms were positioned substitutionally in Fe₂O₃ and at higher doses in Fe₃O₄ and in Fe_{1-x}O. In the different phases, the ions were in Fe²⁺ and/or in Fe³⁺ states after the electron capture of ⁵⁷Co; no after-effects were observed. The results suggest that the phases are formed during fast cooling and crystallization of the oxide from the high-temperature state of the thermal spike.

1. Introduction

Early studies on insulators (mostly on oxide structures) showed [1, 2] that insulators are either amorphized or remain crystalline after ion bombardment depending on the crystalline temperature/melting point ratio. For α -Al₂O₃ and α -Fe₂O₃ it was found that they become amorphous after ion bombardment at intermediate or at high doses. Later these two oxides were studied in more detail. The lattice location study of implanted Pb in α -Al₂O₃ at low doses ($\sim 10^{14}$ atoms cm⁻²) showed that 80% of the Pb atoms are in substitutional positions [3]. High-dose (1.2×10^{17} atoms cm⁻²) iron implantation in α -Al₂O₃ produced Fe⁰, Fe²⁺, Fe³⁺ charge states [4]. The implanted samples remained crystalline and became amorphous only when the implantation was performed at low temperature (77 K) [5]. α -Fe₂O₃ implanted with 57 Fe was studied by Mössbauer effect above 2×10^{16} atoms cm⁻² dose values and it was found that a large fraction of iron is in the Fe³⁺ charge state in the substitutional position. Also, two other phases Fe₃O₄ (magnetite) and FeO were observed. Their relative fractions depended on the doses, and the values were the same as those given in the equilibrium Fe–O phase diagram for the various iron concentrations in the implanted layer [6]. This result is surprising: it may suggest that the final state around the implanted atoms is very similar to what it is in quenched oxides.

In order to find out more about the local state and interactions of the implanted atoms in α -Al₂O₃ and in α -Fe₂O₃, we performed Mössbauer studies on ⁵⁷Fe formed after EC of ⁵⁷Co implanted at low doses. In contrast to the case for ⁵⁷Fe implanted probe atoms, in ⁵⁷Co source experiments the information on the interactions is obtained exclusively on the implanted atoms.

^{||} Also at: KFKI Research Institute for Technical Physics and Materials Science, Budapest, Hungary.

2. Experimental details

Spectral grade ceramic α -Al₂O₃ and α -Fe₂O₃ samples were implanted with ⁵⁷Co and with ⁵⁹Co (for higher dose values) at 80 keV in the Leuven isotope separator at room temperature. Polycrystalline samples were chosen because in this case correlation of the parameters presents fewer difficulties in the analysis of the spectra composed of several overlapping components. The Mössbauer spectra were measured by a conventional spectrometer in constant-acceleration mode at room temperature. For single-line absorber Na₄[⁵⁷Fe(CN)]₆ with ⁵⁷Fe, a thickness of 0.5 mg cm⁻² was used. Analysis of the measured spectra was performed using a least-squares program. The isomer shifts (δ) are given relative to that of α -iron. For a better comparison of the δ -value of the source experiments was changed to positive. In order to calculate the distribution of the implanted atoms, the TRIM code was used [7].

3. Results and discussion

Figure 1 shows the measured and fitted Mössbauer spectra for α -Al₂O₃. The resonance lines at higher velocity values indicate an Fe³⁺ paramagnetic hyperfine-split spectrum component. The paramagnetic hyperfine-split spectrum for Fe^{3+} has been simulated using the formalism for calculation presented in reference [8]. This method is based on a simplified ab initio model which is equivalent to the Clauser-Blume model [9]. A static spin Hamiltonian for Fe³⁺ (S = 5/2) with crystal-field parameters $B_4^0 = -100$ mm s⁻¹, $B_4^3 = 0.001$ mm s⁻¹, magnetic hyperfine interaction with $A_x = A_y = A_z = -2.61$ mm s⁻¹ (ground state) and 1.49 mm s⁻¹ (excited state), and quadrupole interaction parameter P = 0.25 mm s⁻¹ and asymmetry parameter $\eta = 0$ was used. The (δ) value was 0.36 mm s⁻¹. Electronuclear eigenstates of the Hamiltonian were calculated, to represent the Liouville and relaxation superoperators. The relaxation matrix was built up assuming a first-order dynamical spin-Hamiltonian, white-noise approximation, and an expansion of the relaxation matrix up to second order in the dynamical spin-Hamiltonian parameters [9,10]. The reservoir correlation spectral densities different from zero were $I'_{11} = I'_{-1-1} = I''_{11} = I''_{-1-1} = \lambda$, where λ is proportional to the rate of the transition between levels $S_z = \pm 1/2 \Leftrightarrow \pm 3/2 \Leftrightarrow \pm 5/2$. The spectrum with an implantation dose of 5×10^{13} atoms cm⁻² was simulated with $\lambda = 0.05$ mm s⁻¹ and that with 2×10^{14} atoms cm⁻² dose with $\lambda = 0.07$ mm s⁻¹. Both spectra were calculated at the angle of 55° between the γ and z-directions near to the magic angle, in order to simulate the polycrystalline sample. In the simulations the temperature value was 300 K (nearly equal populations of Kramers doublets) and the linewidth used was 0.28 mm s^{-1} . The simulated intensities (shown as SIM in figure 1) were subtracted from the experimental spectra; after this, the remaining parts of the spectra were fitted by the least-squares method. The fitting resulted in two quadrupole doublets and one single-line component. In the spectrum of the sample implanted with the lower dose value, the single-line component can clearly be seen. The hyperfine interaction parameters obtained after fitting are shown in table 1.

The (δ) values of the doublets indicate the presence of Fe²⁺ in high spin states. The δ -value of the single line is in between the values characteristic of Fe²⁺ and Fe³⁺ ionic states; the intermediate δ -value may indicate an electronic state with an electron-density value similar to that of the state formed by electron hopping between Fe²⁺ and Fe³⁺ ions as was observed for magnetite [11].

 α -Al₂O₃ and α -Fe₂O₃ have rhombohedral structure with space group D⁶_{3d}. The metal ions are positioned in the trigonally distorted octahedra of O²⁻ ions. The hyperfine interaction parameters of Fe³⁺ suggest that the paramagnetic hyperfine-split component of ⁵⁷Fe in α -Al₂O₃

Figure 1. Mössbauer spectra of 57 Fe in α -Al₂O₃.

may be attributed to ions located in the octahedral lattice positions. The values of δ and ΔE_Q for the Fe²⁺ components agree with those measured for ⁵⁷Fe implanted in α -Al₂O₃ at low doses [12]. The presence of these components was related to that of the ones found in FeAl₂O₄ spinel. However, the values of ΔE_Q are significantly larger than those [13] characteristic of FeAl₂O₄ at room temperature. Because the average concentration of Co is rather low in the implanted volume, it is more probable that the implanted Co atoms decaying to Fe²⁺ are also located in the distorted octahedra in the Al₂O₃ lattice. The lower charge state of the ions is compensated by oxygen vacancies formed in the implantation process.

Figure 2 shows the spectra of α -Fe₂O₃. The spectra measured for α -Fe₂O₃ are quite different from that measured for α -Al₂O₃. At low dose values, the spectra show one magnetically

2293

Component	δ (mm s ⁻¹)	$\frac{\Delta E_Q}{(\mathrm{mm~s}^{-1})}$	Γ (mm s ⁻¹)	Relative fraction (%)	Dose (atoms cm ⁻²)
QD1 QD2 SL	0.78(2) 0.78(2) 0.55(2)	2.72(2) 1.59(2)	0.92(2) 1.05(3) 0.52(2)	13.8(5) 44.7(5) 11.6(4)	1×10^{14}
QD1 QD2 SL	0.82(2) 0.81(2) 0.54(2)	2.70(2) 1.57(2)	0.96(2) 0.91(2) 0.77(4)	17.4(5) 34.8(4) 15.4(5)	3×10^{14}

Table 1. Hyperfine interaction parameters of the implanted α -Al₂O₃ samples.

Figure 2. Mössbauer spectra of 57 Fe in α -Fe₂O₃.

split component with magnetic hyperfine interaction values equal to the value for 57 Fe in the pure target crystal [14]. Table 2 gives the hyperfine interaction parameters and the relative fractions of the components. The same quadrupole-splitting values for the implanted 57 Fe and for the pure α -Fe₂O₃ indicate that the angle of the spin direction to the *c*-axis in the implanted phase is also the same as in the pure α -Fe₂O₃ above the Morin transition.

Phase	δ (mm s ⁻¹)	$\frac{\Delta E_Q}{(\mathrm{mm~s}^{-1})}$	HF (T)	Γ (mm s ⁻¹)	Relative fraction (%)	Dose (atoms cm^{-2})
α-Fe ₂ O ₃	0.38(2)	0.20(2)	51.9(5)	0.58(2)	100	8 × 10 ¹³
α-Fe ₂ O ₃	0.39(2)	0.20(2)	51.5(5)	0.45(2)	100	2×10^{14}
α-Fe ₂ O ₃	0.38(2)	0.20(2)	51.5(5)	0.47(2)	18(2)	3×10^{16}
Fe ₃ O ₄ -A	0.35(2)	0.01(5)	49.3(5)	0.35(2)	11(2)	
Fe ₃ O ₄ -B	0.73(2)	0.06(5)	46.3(5)	0.69(3)	66(5)	
$Fe_{1-x}O$	-0.88(2)	0.55(3)		0.35(3)	5(2)	

Table 2. Hyperfine interaction parameters of the implanted α -Fe₂O₃ samples.

At an implanted dose of 3×10^{16} atoms cm⁻², the values of the hyperfine interaction parameters indicate that the implanted ⁵⁷Co is located in three phases: α -Fe₂O₃, Fe₃O₄ (magnetite), and cation-deficient [15] $Fe_{1-x}O$, the latter showing a quadrupole-split doublet. Since the ratio of the Mössbauer–Lamb factors of the A (tetrahedral) and B (octahedral) positions in the magnetite phase is 0.94(2) at room temperature [16], the ratio of the relative intensities of the spectral components of the A and B positions is 1:6 instead of close to 1:2the latter in pure magnetite. This difference may indicate that the majority of the implanted Co ions are located at octahedral positions. This seems reasonable because Co prefers the 2+ to the 3+ ionic state and prefers to build into the B sites of the inverse spinel magnetite. At low dose values, the spectra of (⁵⁷Co)⁵⁷Fe appearing with the characteristic hyperfine interaction values of α -Fe₂O₃ indicate substitution for Fe with Co in α -Fe₂O₃. At the higher dose value, however, the average relative fraction of metals in the oxide increases from 40 to 42.8%. At around the maximum of the depth distribution, the relative concentration reaches 45%. In the phase diagram [17] of Fe–O, at these concentration values, the Fe_3O_4 and FeO phases are present. Formation of these stable phases may indicate that during implantation heat spikes are formed and the temperature value in the cascade volume is close to the non-congruent melting temperature of Fe₂O₃ (1855 K). On cooling down, crystallization occurs resulting in the different phases being present in a relative concentration corresponding to the metal/oxygen ratio in the implanted volume. The Co atoms are built into these phases.

There is now ample evidence showing that the high ion beam mixing efficiency cannot be understood in terms of ballistic two-body collisions but can be attributed to the formation of melting in displacement cascades [18]. Simulations by molecular dynamics calculation [19–23] have demonstrated that the model of surface melting provides a straightforward explanation for the formation of dislocation loops in implanted metals and for the formation of potholes on the surface of implanted silicon. The calculated temperatures in the implanted volumes extended to a few thousand K in these implanted materials. Because of the high energy loss per unit length for the implanted atom in the 50–100 keV energy region, the high temperatures in the collision cascades of transition metal oxides are highly probable. Ionbeam-induced creep in vitreous SiO₂ could be understood by supposing there to be thermal spikes even for this low-Z material [24]. The present experimental result on α -Fe₂O₃ indicates the existence of high temperatures in the displacement cascade zones. 2296 I Dézsi et al

4. Conclusions

The Mössbauer spectra of implanted ⁵⁷Co in α -Al₂O₃ after electron capture showed Fe²⁺ and Fe³⁺ ionic states, the latter with paramagnetic hyperfine splitting. The spectra of α -Fe₂O₃ are quite different from that measured for α -Al₂O₃. At low dose values, the spectra show one magnetically split component with magnetic hyperfine interaction values and electric quadrupole splitting equal to the values for ⁵⁷Fe in the pure target crystal, indicating the substitution for Fe with Co in the α -Fe₂O₃ lattice. At higher dose, the hyperfine interaction values indicate that the implanted ⁵⁷Co is located in three phases: α -Fe₂O₃, Fe₃O₄ (magnetite), and cation-deficient Fe_{1-x}O. From the formation of these stable phases, the formation of heat spikes can be concluded. On cooling down, crystallization occurs, resulting in the different phases being present in a relative concentration corresponding to the metal/oxygen ratio in the implanted volume.

Acknowledgments

The work was supported by Grant No T 14235 (OTKA) and under the cooperation agreement between OMFB and the Ministry of the Flemish Community (No B14/96).

References

- [1] Naguib H M and Kelly R 1975 Radiat. Eff. 15 1
- [2] Kelly R 1981 Nucl. Instrum. Methods 182+183 351
- [3] Drigo A V, Lo Russo S, Mazzoldi P, Goode P D and Hartley N E W 1977 Radiat. Eff. 33 161
- [4] Donnet C, Jaffrezic H, Marest G, Moncoffre N and Tousset J 1990 Nucl. Instrum. Methods B 50 410
- [5] McHargue C J, Sklad P S, McCallum J C, White C W, Perez A and Marest G 1990 Nucl. Instrum. Methods B 46 144
- [6] Binczycka H, Fornal B, Marest G, Moncoffre N and Stanek 1991 J. Radiat. Eff. Defects Solids 116 97
- [7] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Ranges of Ions in Solids (New York: Pergamon)
- [8] Pfannes H-D and Magalhães-Paniago R 1994 Hyperfine Interact. 83 79
- [9] Clauser M J and Blume M 1971 Phys. Rev. B 3 583
- [10] Dattagupta S, Shenoy G K, Dunlap B D and Asch L 1977 Phys. Rev. B 16 3893
- [11] Kündig W and Hargrove R S 1969 Solid State Commun. 7 223
- [12] McHargue C J, Farlow C C, Sklad P S, White C W, Perez A, Kornilios N and Marest G 1987 Nucl. Instrum. Methods B 19+20 813
- [13] Dormann J L, Seqqat M, Fiorani D, Nogues M, Soubeyroux J L, Bhargava S C and Renaudin P 1990 Hyperfine Interact. 54 503
- [14] Greenwood N N and Gibb T C 1971 Mössbauer Spectroscopy (London: Chapman and Hall) p 240
- [15] Greenwood N N and Gibb T C 1971 Mössbauer Spectroscopy (London: Chapman and Hall) p 248
- [16] Sawatzky G A, van der Woude F and Morrish A H 1969 Phys. Rev. 183 383
- [17] Wriedt H A 1993 Diagrams of Binary Iron Alloy ed H Okamoto (Materials Park, OH: ASM International) p 280
- [18] Trinkaus H 1997 Mater. Sci. Forum 248-349 3
- [19] Hsieh H, Diaz de la Rubia T and Averbach R S 1989 Phys. Rev. B 40 9986
- [20] Diaz de la Rubia T and Guinan M W 1991 Phys. Rev. Lett. 66 2766
- [21] Ghaly M and Averbach R S 1994 Phys. Rev. Lett. 72 364
- [22] Averbach R S and Ghaly M 1994 J. Appl. Phys. 76 3908
- [23] Caturla M-J, Diaz de la Rubia T, Marqués L A and Gilmer G H 1996 Phys. Rev. B 54 16 683
- [24] Trinkaus H 1995 J. Nucl. Mater. 223 196